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Nonlinear Evolution and Saturation of an

Unstable Electrostatic Wave§

IR < q. f . tt
B. D. Fried, €. $. Liu, R. W. Means, and R. Z. Sagdeev

University of California, Los Angeles, California 90024

Abstract

I'he nonlinear development and saturation of a single Langmuir
wave driven unstable by a gentle bump in the tail of the distribution
function in a collisionless plasma is studied by treating the resonant
particles numerically. Over a wide range of parameter values, the
amplitude of the potential ¢ is found to saturate at such a level
that the ratio g = /Y = 3.2, where = (ekzcb/m)l/2 is the bounce

Y'Y, ' ey

frequency of the trapped particles in the wave trough and Yo is the
linear growth rate, approximately given by the classical Landau
value. In view of the importance of inverse Landau damping for many
instabilities, this work should have wide applicability and the

results should be suitable for direct experimental tests.
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We report here the result of a study of the evolution and saturation of
a Langmuir wave driven unstable by the resonant particles whose velocities
are near the wave phase velocity with a "gentle bump-1in-tail" distribution.
The method used represents a new approach to computer stimulation of a
plasma in that only a small fraction of the particles, the resonant particles
(i.e., trapped and nearly trapped particles in the nonlinear stage), are
followed numerically, the remainder being treated analytically.(l) In the
linear theory, the interaction of the wave with the resonant particles in
the bump leads to the well~known Landau growth of the wave.(z)

As the unstable wave grows, the nonlinear effects become important. 1If
the spectrum of unstable waves is sufficiently wide, then the noniinear
development can be adequately described by the quasi-linear theory,(a) in
which the trapping of the particles by the wave field is neglected. 1If, on
the other hand, the spectrum of the unstable modes 1is narrow, either because
the linear growth rate is a peaked function of wave number or due to initial
conditions, then a single mode dominates and the trapping of the resonant
particles is frequently the most important nonlinear effect.

The effects of the trapped particles on the damping of a single large
amplitude Langmuir wave have been previously studied with anal: 1ic methods.(4)
In these analytic treatments, however, it {s assumed that both the amplitude
and the phase of the wave are constant in time (Yo/mb << 1). With these
approximations, many aspects of the nonlinear wave-particle interaction
which are important in the case of unstable waves, such as the effect of
transition between the trapped states and untrapped states (trapping and
detrapping) and the adiabatic heating and cooling of the trapped particles

due to the amplitude variation, are neglected. In the present work, we



follow the evolution of an unstable wave by treating the dynamics of the
resonant particles numerically; it is thus possible to allow both the ampli-
tude and the phase of the wave to vary in time, as dictated by Poisson's
equation, l.e., to study the complementary case Yo/wbo ; 1 , vhere Wo is

w att = 0. The nonlinear phase shift, varying on the same time scale as
the amplitude, is particularly significant in affecting the nonlinear
evolution and saturation as well as in conserving the energy in the wave
frame. Neglecting the phase shift in the nonlinear stage, as assumed in a

(5)

recent work, leads to an erroneous conclusion on saturation.

The bulk of the electrons (nonresonant particles) are adequately de-
scribed by the usual linear approximation, even at the time of saturation,
so they appear simply via a dlelectric constant which modifies the field
produced by the resonant particles. Their thermal velocity is assumed to be

so small compared with the phase velocity of the wave, U = mp/k, that they

can be approximated by a cold fluid with dielectric function
2
€(w,k) =1 - (wp/w) . (1)

For the resonant particles, we assume a distribution uniform in space and

linear in velocity over a range -6v < v=U = w < §v :

(a/268v) (1+Bw/&v) for |w| Sv
fpv) = (2)
0 for |w| > 6v

IA

v

where w {s the velocity in the initial wave frame; a is the fraction of
the resonant particles compared to the bulk eiectrons; 8 is the fractional
change in f from v = U to v =U ¢t 8v ; and &v {s typically choscn to
be of order 10 (Yo/k) so that there remain untrapped resonant particles in
the nonlinear stage. This "single-wave approximation” is valid for such a

broad gentle bump, where one would expect many modes to grow, if a single



wave with amplitude sufficiently above the thermal .0oise level is launched
into the system initially, with electric field E = EO sin kx and a dorre-
sponding perturbation in the charge density of the nonresonant particles:
DNR(x) = po(O) cos kx where 00(0) = kho/bﬂ . The evolution of the wave in

time is described by Poisson's equation
e(w,k) E,k) = 4n[p (w,k) + pplw,k)]/1k (3)

where p, 1is the charge density of the resonant particles. Transforming

R
back to the time domain and using Eq. (1), we have

t iw t’

dte P op ("]

-iw t -iw_t
E(k,t) = (E /21) e L (47741 [pp (t) + (mp/Zi) e P

O i,

(4)
where the solution with phase velocity -U has “een dropped because it
cannot have significant interaction with the resonant particles which have
v = U . The charge density of the resonant particles is given by

N -1kxj(t)
pp(t) = (ong/N) | e (5)
j=1

where n 1is the total particlc: density and xj(t) is the instantaneous

position of the jth resonant particle. It is convenient to express x,(t)

J
in terms of the deviations, 2z from the unperturbed orbit of the jth

J)

particle with initial velocity U + w kxj = wp: + wj + z, where wj =

3t 3
kfx, + w,t) 1is the unperturbed phase in the initial wave frame. Since the

Jo J
time scale for the energy transfer between the wave and resonant particles,
typically of the order of the inverse growth rate or bounce frequency, is
much longer than the plasma period m;l , 1t 1s convenient to remove the

explicit factor exp(-iwpt) from Eqs. (4), (5), by setting pR(t) =

exp(-iwpt) p(t) and E(k,t) = F(Eo/21) exp(-iwpt) . Note that F 1is in
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general complex, F(t) = [Fl exp[i¢p(et)] with F(0) =1 . Choosing the
initial bounce time w;i ,» @8 a unit of time, k-'1 as a unit of distance,

we have the following dimensionless Poisson equation:
iw t 2 t
(24E(k,0)/E) e Pz F(e) = 1+ C2a0?/N) [s(r) + (u/21) J dt' s(t'")]
0

(6)
with
N -1y tz))
S(ty = J e I3 . Q)
j=1
The equation of motion is
1(p,+z,)
ip=@me 1 4 (8)

The initial conditions for (8) are zj(O) = ; (0) = 0. To simulate the

h]
distribution function of the resonant particles, Eq. (2), we choose the wjo
to be Nz uniformly spaced points on the interval (0,2m): wlo - 2n2/Nz s

0<x« (Nz—l) . For each wko , we choose Nv values of wj on the interval

(~8v,8v), selected to correspond to the resonant particle distribution

function, Eq. (2):

wi/sv = (a- Ul ayen Mo us 9)

It will be shown in the following that this distribution of N = Nsz
discrete particles does give approximately the same linear growth rate and

frequency shift as the continuum distribution, Eq. (2).

Linear Theory

For sufficiently early times, we can linearize not only the nonresonant
particle motion but also that of the resonant particles, whereupon (6) and

(8) lead to the usual multi-beam dispersion relation
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€,V =1 - (aUJ/Zva) ZJ'(\*W 2o (10)

i

where the sum 1s carried out only over the Nv different values of w given
o4
by Eq. (9).
In the continuum limit (Nv + ), corresponding to the choice (2) for

fR' the integration over w in (10) gives

3
62(\))=1~2au { B+dv B v—év}_

log =0 (11)
vév NI (6v)2 v vHiv

If v << v , we expand the terms in brackets in powers of dv/v ,
obtaining to leading order the usual single beam dispersion relation. This
case has recently been studied by O'Neil et al.(l) with an approach similar

to ours. In the limit &v >> v , we can expand in powers of Vv/&v ,

obtaining
3
e, (v) =1 - 2 - {1-1’2'—3+—§;"§+ ervend] Y . (12)
v
v(év)
The only root of 83 =0 is
v =y (-2/m8) [1 + ayL/wdSv]-l (13)
where
.2, - 3 2
Y, =5 U £ W) uy TaBU”/4(8v) (14)

is just the Landau value (in our dimensionless units) with fo'(U) computed
from Eq. (2).

We see from Eq. (13) that the growth rate is approximately the Landau
value provided yLlév << 1 . The deviation of Yo from the Landau value YL
and the nonvanishing real part of Vv are due to the sharp-edged distribution,
Eq. (2). This sharp edge can be removed by joining smoothly the distribu~
tion of the resonant particles to that of nonresonant particles. This
introduces additional "boundary terms" in Eqs. (3) and (6) and, in the

linearized case, yields the exact Landau growth rate (14), with vanishing Re v .



The ncar vanishing of & at early times in Fig. 2 is a consequence of the
fact that our numerical results are based upon a ‘odified form of (6) which
includes these "borndary terms". f they are omitted, then a non-vanishing
6 , of order Yoo is obtained in the initial stages, in agreement with (13).
Aside from this non-zero & and the small changes in the lincar growth rate,
however, thcse boundary terms do not affect the nonlinear saturation level.
It is determined by the actual linear growth rate alone, given by either
Eq. (13) or Eq. (14), corresponding to the cases with or without thc sharp
edge in the distribution.

We return now to the dispersion Eq. (12) for N, "beams". In general,
we expect to find an unstable root, vj, with real part between each adjacent
pair of wj, as illustrated in Fig. 1 for a particular choice of parameter
values. The associated residue values, [El'(vl)]-l are also shown. The
continuum value for this case, obtained from Eq. (13), is indicated; it falls
very close to the fastest growing root of the Nv-beam modes. The latter also
has the largest residue [El'(vl)]-l' and hence dominates the linear behavior,

leading to a good agreement with the continuum results.

Nonlinear Results

We put (6) and (8), including "boundary terms", into standard difference
equation form and solve by straightforward step-ahead in time. The wave
initially grows at the growth rate Yo given by Eq. (16) until a time tNL

at which the orbit of the particles trapped at the trough of the wave becomes

nonlinear. The time for the onset of nonlinearity, tNL' is approximately given

t
NL
by j dt wb(t) =T or wb(tNL) = ﬁYO/Z + 1. After t is reached,

0

NL

the growth rate begins to decrease from the linear value, turns negative, and then
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oscillates about zero with the instantaneous bounce frequency, as shown in
Fig. 2. The amplitude of the electric fleld is initialiy small, f.e.,
g(t=0) = wbo/ya < 1 . It increases exponentially, with growth rate Y,
until tNL’ anc then saturates at such a level that the bounce frequency of
the trapped particle {n the wave trough is approximately equal to 3.2 times
the linear growth rate, f.e., g = wb/yo = 3.2. This ratio g at saturation
is independent of Y, and other parametric values so long as g, <1, as
shown in Table I. The nonlinear frequency shift 1s of the same order of
magnitude as the nonlinear growth rate.

In conclusion, we note that

1) Treating numerically only the resonant particles is an efficient
simulation technique for any problem where a small fraction of particles
exchange energy with waves.

2) The universal character (8 = 3.2) of the saturation level should
be suitable for experimental test.

3) Since many other instabilities involve the same wave-particle
resonance mechanism as Landau's problem, similar results are to be expected

there as well.
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obtained only when the parameters are so chosen that all resonant
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non-resonant particles). Otherwise, a quite different nonlinear behavior
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all «f the cases reported here, the final saturation amplitude 18 such
that an appreclable fraction of the resonant particles remains untrapped.
We are indebted to T. M. 0'Nefl for calling to our attention the

{mportance ¢f Including variations in the phase.
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Figure Captions

a) Locus, {n the complex w plane, of roots, VQ, of the multi-
beam dispersion Eq. (10) for NV = 30, with other parameters equal
to those in Table 1, Case A. The veriLical lines show the locations
of the 30 beams. The point designated with an arrow is the
continuum value of v given by (13).

b)  Relative values of the residues, [51'(vl)]-1 for the roots

of (1) shown in a). As in a), the second highest point is the

residue obtained from the continuum form, (12), for g.

Temporal evolution of the instantaneous frequency, wb(t) =
[eE(t)k/m]l/z; growth rate yj, and frequency shift, & , for
case A of Table I, with NV = 960 and Nz = 4. The vertical scale
is in the unit of finitial bounce frequency, Wy o the horizontal
scale is in the unit of wbo-l. The Landau value, YL’ glven by

(14) . i1s also shown.



fable L.

Woo * (ekEo/m)

1/2

° is the actual initial growth rate.

Summary of parameters and saturation amplitudes for various cases.
is the initial bounce frequency, W is the

bounce frequency at saturation, YL is the Landau growth rate,

Case A B Cc D E F
a 2.107 1007 w10 w07 sa0 2.5.1078
8 0.5 1.0 0.5 0.1 0.2 0.4

bekévlu, 40 100 40 80 80 80

U sy 2.10 10 2.10 2.10*  2.10 2.10%

Y, /0, 3.93 7.85  7.85 9.82  9.82 9.82

Y /0, 3.6 7.6 6.9 8.8 9.0 9.0

oy ¢/ 3.23 3.28  3.18 3.18  3.22 3.22




(a)

““\Illlll I

- \ Rew
-kdv 9 kBv

] (b)

L--.l.. l.l.... | R
-kdv 0 kv ow

Fig. 1. a) Locus, in the complex w plane, of roots, Voo of the multi-beam
dispersion Eq. (10) for Nv = 30, with other parameters equal to those in Table I,
Case A. The vertical lines show the locations of the 30 beams. The circled
point designated with an arrow, is the continuum value of v given by (13).

b) Relative values of the residues, [el'(\)ﬁ)l'1 for the roots of (1) shown in

a). As in a), the second highest point is the residue obtained from the con-

tinuum form, (12), for e.
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